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Abstract

This paper addresses the development of energy-based models and model-based control designs necessary
to achieve present and projected applications involving atomic force microscopy. The models are based on a
combination of energy analysis at the mesoscopic level with stochastic homogenization techniques to construct
low-order macroscopic models. Approximate model inverses are then employed as filters to linearize transducer
responses for linear robust control design.

Keywords: Atomic force microscope (AFM), hysteresis, robust control design, general densities

1. Introduction

Developed in 1986, the atomic force microscope (AFM) relies on interatomic forces between a cantilever
tip and the sample to obtain ultra-high resolution surface images [4]. The relatively low cost of the devices
and the fact that they require minimal sample preparation has made the AFM a standard diagnostic tool in
research laboratories. However, several present and projected applications make requirements on the technology
that current AFM designs are not able to consistently achieve. These limitations are primarily due to the
high sample rates required for applications such as real-time product diagnostics or monitoring of biological
processes, nanoelectromechanical (NEMS) applications, and employment of AFM technologies for spintronics.
Real-time product diagnostics include analysis of contact lenses to detect defects or protein deposits and screening
of semiconductor chips to maintain quality control. The real-time monitoring of biological processes has the
potential for leading to treatment policies for ailments such as osteoporosis as well as the potential for quantifying
fundamental biological phenomena such as protein unfolding. Within the NEMS regime, the repulsive forces
utilized in atomic force microscopy also lead to the potential for nanoconstruction using the cantilever as an
actuator. Finally, the extreme accuracy provided by the AFM is presently being combined with nuclear magnetic
resonance microscope (NMRM) technology to investigate the detection of single electron spins [3, 8, 16].

A crucial component in the AFM design for all of these applications is the piezoceramic (PZT)-based stage
used to position the sample as depicted in Figure 1(a) [2, 4, 11, 13, 14]. Nested minor loops in data collected
at 0.1 Hz are shown in Figure 1(b). Whereas PZT actuators provide the broadband and extremely high set
point capabilities required by the AFM stages, they also exhibit frequency-dependent hysteresis as illustrated
in Figure 2. At low frequencies, the hysteresis inherent to the these materials can be accommodated through
PID or robust control designs [1, 9]. However, at the higher frequencies required by the previously outlined
applications, increasing noise-to-data ratios and diminishing high-pass characteristics of control filters preclude
a sole reliance on feedback laws to eliminate hysteresis. This motivates the development of control designs that
incorporate and approximately compensate for hysteresis through model inverses employed either in feedback or
feedforward loops.
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Figure 1: (a) PZT-based AFM stage. (b) Nested minor loops in data collected at 0.1 Hz on an AFM.
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Figure 2: Frequency dependent field-displacement behavior of an AFM. Sample rates of (a) 0.279 Hz, (b) 1.12 Hz,
(c) 5.58 Hz, and (d) 27.9 Hz.
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Figure 3: Gibbs energy G and hysteron P resulting from the necessary condition ∂G
∂P = 0 for negligible thermal

activation.

2. Constitutive Relations

To model the constitutive behavior of the piezoceramic stacked actuator, the stress-strain relation is assumed
to be linear. However, the relation between the applied voltage V (or the applied field E) and the polarization P
exhibits nonlinearities and hysteresis. The actuator is also assumed to be biased through poling so that the
relation between P and the strain ε is linear for the considered operating conditions. To characterize the
hysteretic E-P behavior at the domain level, a Helmholtz energy relation was derived in [15] using statistical
mechanics principles under the assumption that dipoles are either aligned with the field or diametrically opposed
to it. This model is appropriate for a single crystal with uniform effective fields. To construct a macroscopic
model for a polycrystalline material with variable effective fields, the coercive and effective field values are then
assumed to be distributed as detailed in the latter half of this section.

Under fixed temperature conditions with no applied stress σ, it is illustrated in [15] that a first order approx-
imation to the statistical mechanics-based Helmholtz energy is the piecewise quadratic relation

ψ(P ) =




1
2η(P + PR)2 P ≤ −PI

1
2η(P − PR)2 P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
|P | < PI .

(1)

As shown in Figure 3, PI is the positive inflection point and PR is the value of P at which the positive local
minimum of ψ occurs. The parameter η is the reciprocal of the slope of the E-P relation after switching occurs.
This fact can be used to establish an initial parameter value for η when modeling a specific data set.

In the case of no applied stresses σ, the Gibbs energy can be formulated as

G(E,P ) = ψ − EP (2)

where the second term represents the electrostatic energy due the applied field E. In order to include ferroelastic
coupling, we utilize the extended Helmholtz relation

ψe(P, ε) = ψ(P ) +
1
2
Y P ε2 − Y P γεP. (3)
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The Gibbs energy is then given by

G(E,P, ε) = ψ(P ) +
1
2
Y P ε2 − Y P γεP − EP − σε (4)

where σε incorporates the elastic energy. Note that Y P is the Young’s modulus for a constant polarization and
γ is a ferroelastic coupling coefficient.

In the case of negligible thermal activation, the local average polarization P̄ is determined from the necessary
conditions

∂G

∂P
= 0 ,

∂2G

∂P 2
> 0. (5)

Applying these conditions to (2) yields a piecewise linear E-P characterization

[P̄ (E;Ec, ξ)](t) =




[P̄ (E;Ec, ξ)](0), τ(t) = ∅
E
η − PR, τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR, τ(t) 6= ∅ and E(max τ(t)) = Ec

(6)

where

[P̄ (E;Ec, ξ)](0) =




E
η − PR, E(0) ≤ −Ec

ξ, −Ec < E(0) < Ec

E
η + PR, E(0) ≥ Ec

(7)

and the transition times are
τ(t) = {t ∈ (0, Tf ] | Et = −Ec or Et = Ec}. (8)

However, if thermal activation is significant, the dipoles can achieve the thermal energy required to switch
in advance of the minimum Gibbs energy so the relative thermal and Gibbs energy must be balanced through
Boltzmann principles. The probability density for achieving an energy level G is then given by

µ(G) = Ce−GV/kT (9)

where k is Boltzmann’s constant, V is a reference volume and C is a constant that is selected so that when µ(G)
is integrated over all possible dipole orientations, a probability of 1 is achieved. If we let 2σ be the separation
between possible polarization states around P0, the probabilities of reaching a polarization state having sufficient
energy to switch orientations are given by

r+− =

∫ P0+σ

P0−σ
e−G(E,P )V/kT dP∫ ∞

P0−σ
e−G(E,P )V/kT dP

, r−+ =

∫ P0+σ

P0−σ
e−G(E,P )V/kT dP∫ P0+σ

−∞ e−G(E,P )V/kT dP
. (10)

The likelihoods of reaching the required energy and thus of the dipoles switching from a positive to a negative
orientation and conversely are then

p+− =
1
τ

r+− , p−+ =
1
τ

r−+ (11)

where τ is the relaxation time. The fractions of dipoles in each orientation evolve according to the ordinary
differential equations

dx+

dt
= −p+−x+ + p−+x− ,

dx−
dt

= −p−+x− + p+−x+. (12)

The expected polarizations due to positively and negatively oriented dipoles are

〈P+〉 =
∫ ∞

P0+σ

Pµ(G)dP , 〈P+〉 =
∫ P0−σ

−∞
Pµ(G)dP (13)
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so the evaluation of C yields

〈P+〉 =

∫ ∞
P0+σ

Pe−G(E,P,T )V/kT dP∫ ∞
P0+σ

e−G(E,P,T )V/kT dP
, 〈P−〉 =

∫ P0−σ

−∞ Pe−G(E,P,T )V/kT dP∫ P0−σ

−∞ e−G(E,P,T )V/kT dP
. (14)

For a single crystal with uniform effective field, the local average polarization is subsequently

P̄ = x+〈P+〉 + x−〈P−〉. (15)

In the manner detailed in [15], the evaluation of the integrals in (10) and (14) can be simplified through approx-
imations employing the inflection points ±PI rather than the unstable equilibrium P0.

Both of the relations (6) and (15) are valid only for homogeneous single crystal materials with uniform effective
fields. To account for nonuniformity and inhomogeneities in the materials, local coercive and effective fields are
assumed to be manifestations of underlying distributions rather than constants. The macroscopic polarization
model is then given by

P (E) =
∫ ∞

0

∫ ∞

−∞
P̄ (E + Ee, Ec, ξ)ν1(Ec)ν2(Ee)dEedEc (16)

where ν1 and ν2 are appropriate densities. Motivated by choices in the magnetics literature, ν1 and ν2 were
respectively designated to be lognormal and normal densities in [15]. However, the fact that neither of these
choices is based on energy considerations, motivates the consideration of general densities.

Based on physical arguments, we may assume that the general densities decay to zero. Therefore, the double
integral can be evaluated by truncating the domains and using composite Gaussian quadrature. In this case,
discretization of (16) gives

P (E) =
Ni∑
i=1

Nj∑
j=1

P̄ (E + Eej
, Eci

, ξi)ν1(Eej
)ν2(Eci

)viwj (17)

where Eej
, Eci

are the abscissas and vi, wj are the weights. Here, ν1(Eej
) and ν2(Eci

) are parameter values to
be determined. Details regarding the identification of ν1 and ν2 can be found in [10].

Finally, the equilibrium condition
∂G

∂ε
= 0 (18)

yields the elastic constitutive relation
σ = Y P ε − Y P γP. (19)

This relation along with the nonlinear polarization relation (16) quantifies the constitutive behavior for the
piezoceramic materials employed in the AFM.

3. Model Inverse

To construct a model inverse to be employed as filter in the robust control design, consider first an imple-
mentation of the forward model (17) described in [15] and summarized below. Formulate the local polarization
(6) as

P =
E

η
+ PR∆ (20)

where ∆ is an Ni ×Nj matrix whose elements are either 1 or −1. The ijth entry in ∆ indicates whether the jth
effective field value Eej

has crossed the ith coercive field value Eci
and thus whether the associated polarization

value is on the upper or lower branch of the hysteron. Now rewrite ∆ as a vector ∆vec with the order of the
entries determined by order in which the entries in ∆ change as the field E is increased or decreased. Thus ∆vec

can be updated one entry at a time as the field changes.
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A model for quantifying the inverse map between P and E is now outlined in Algorithm 1.

Algorithm 1.

Specify Eprev, Pprev, Pnew

Ptemp = Pprev

while Ptemp < Pprev

Etemp = value of E at which the next entry in ∆vec changes
Update next entry in ∆vec

Compute change in P and update P
Update Ptemp

end
Compute Enew

4. Stacked Actuator Model

In addition to hysteresis, the dynamics of the actuator must be incorporated. We assume that the rod has
cross-sectional area A, length `, density ρ and Young’s modulus Y P . Let cP be the Kelvin-Voight damping
parameter and γ be the piezoelectric coupling coefficient. In the present stage design, depicted in Figure 1(a),
one end of the actuator is fixed, while the attachment at the other end can be modeled as a damped spring-mass
system. For this end, let ML be the mass, kL be the stiffness, and cL be the damping coefficient. Force balancing
along the actuator then yields the relation

ρA
∂2u

∂t2
=

∂N
∂x

(21)

where the resultant N =
∫

A
σdA is given by

N = Y P A
∂u

∂x
+ cP A

∂2u

∂x∂t
− Y P AγP (E). (22)

Note that u denotes displacement in the longitudinal x-direction and that the relation strain ε = ∂u
∂x is used in

obtaining (22). The boundary conditions are u(t, 0) = 0 at the fixed end and

N (t, `) = −kLu(t, `) − cL
∂u

∂t
(t, `) − ML

∂2u

∂t2
(t, `) (23)

at the moving end. Initial conditions are given by u(0, x) = ∂u
∂t = 0. The polarization P (E) is specified by (16).

An approximate solution to (21) is found by first deriving a weak form

∫ `

0

ρA
∂2u

∂t2
ψdx +

∫ `

0

[
Y P A

∂u

∂x
+ cP A

∂2u

∂x∂t

]
∂ψ

∂x
dx = −

∫ `

0

Y P AβP (E)
∂ψ

∂x
dx (24)

and then discretizing in space with linear finite elements and in time with finite difference techniques. Details of
the derivation of the weak form and the construction of the finite element and finite difference equations can be
found in [13].

In order to determine the displacement of the rod at the end x = `, the rod model can be approximated by
a lumped spring-mass model since the cross-section is small compared to the length and the electric field E is
approximately uniform throughout the actuator. Numerical simulations and physical experiments demonstrate
that the resulting ODE model is a good approximation to the PDE model for specifying tip displacement. The
ODE model has the advantage of faster computational times compared to the discretized PDE.
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Figure 4: Characterization of AFM field-displacement behavior at 0.1 Hz.

5. Model Validation

To demonstrate the accuracy and efficiency of the hysteresis model, we consider the characterization of
nested minor loops collected at 0.1 Hz as well as E-P behavior at frequencies ranging from 0.28 Hz to 27.9 Hz.
In both cases, displacements were computed using the ODE model constructed using the stress relation (19) and
hysteresis model (16) with general densities ν1 and ν2 identified using the techniques detailed in [10, 12].

Figure 4 illustrates the capability of the model to characterize nested, biased minor loop behavior and Figure 5
demonstrates the characterization of frequency-dependent dynamics. The latter involves the quantification of
both thermal relaxation and inertial effects as illustrated by the change in sign of the slope ∂P

∂E following field
reversal. Further details demonstrating properties of the model for characterizing hysteresis in various PZT
compounds can be found in [10, 11, 12, 15].

6. Robust Control Design

To construct a robust control design that accommodates the hysteresis and constitutive nonlinearities, the
model can be inverted in the manner outlined in Section 3 and employed as a filter. Discretization errors combined
with modeling errors will prevent complete elimination of error by the filter, but the disturbance d associated
with the actuator can be significantly reduced in this manner. We will construct H2 and H∞ algorithms that
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Figure 5: Characterization of AFM field-displacement behavior with sample rates of (a) 0.279 Hz, (b) 1.12 Hz,
(c) 5.58 Hz, and (d) 27.9 Hz.

utilize the model inverse. After a discussion of the system representation, numerical examples are given to
demonstrate the performance of the control designs.

The control design is analogous to that described in [5, 6, 7]. The physical control system is the AFM and the
control objective is to track a reference trajectory r which represents the displacement of the actuator. The system
representation in shown in Figure 6. The plant P represents the ODE model for the AFM rod. The sensor noise
in the measurement of y is separated into two components, s, taken to be 60 Hz noise to simulate electromagnetic
disturbances, and n, taken to be high frequency noise which can be attributed to the sensing device or external
disturbances. The disturbance d represents errors in the plant input caused by either unattenuated hysteresis
and constitutive nonlinearities or by discretization errors from the inverse filter. The output signal ê represents
the weighted tracking error and û is the weighted output of the controller K. The weighting functions Wr, We,
Wu, Wd, Ws, and Wn are selected to achieve the best performance from the controller. They are chosen based
on known information about the corresponding signals.

To describe the open loop system, maps from the inputs r, d, s, and n to the outputs e, ê and û are designated
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Figure 6: System representation including input disturbance d and sensor noise s and n in the transducer.

as

e = Wr[r] − (P [Wd[d] + u] + Wn[n] + Ws[s]
= Wr[r] − P [Wd[d]] − Wn − Ws[s] − P [u]

ê = We[e]
û = Wu[u].

The transfer function matrix G from the inputs r, d, n, s and u to the outputs e, ê and û is then specified by
WeWr −WePWd −WeWn −WeWs −WeP

0 0 0 0 Wu

Wr −PWd −Wn −Ws −P


 . (25)

The linear fractional transformation system representation is shown in Figure 7 with details provided in [7, 17].
The choice of weighting functions is an important part of the control design. To filter the 60 Hz sensor noise s,

a sixth-order passband Chebyshev filter with a range of 55 Hz to 65 Hz is used for Ws. The frequency response
of Ws is shown in Figure 8(a). The choice for Wn is a second-order highpass Butterworth filter with a cutoff of
150 Hz which accommodates the high frequency sensor noise n. The weight Wr is based on which components
of the reference signal are most important during tracking. For example, considering the 0.25 Hz sinusoidal part
of the reference signal to be most important, a sixth-order passband Chebyshev filter with a range of 0.125 Hz
to 0.375 Hz was employed. To determine the weighting filter Wd, the reference signal was scaled to have the
same order of magnitude as polarization. This signal was then fed into either the inverse filter or a linear filter
to determine the scale from polarization and field. The result was then fed to the forward model. This process
is depicted in Figure 9 for the two choices of disturbance. In both cases, the power spectrum of the output d
had only low frequency components. Thus a second-order lowpass Butterworth filter with a cutoff of 10 Hz was
used for Wd. The frequency response of Wd in the case when the linear filter was used is shown in Figure 8(b).
The weighting function on the error signal e was chosen to be We = γe

s+εe
with γe = 1 × 101 and εe = 1 × 10−8.

An integrator was chosen so that the error would not achieve steady state at a nonzero value. Also, the pole
was shifted slightly off zero to ensure that the controller was realizable. Finally, the weighting function on the
controller output was chosen to be Wu = 5 × 10−6.

r

s
d

n
w

z G

K

u
e

Figure 7: Linear fractional transformation representation (LFT) of the transducer model.
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Figure 8: (a) Frequency response of the passband filter Ws (b) Frequency response of Wd for the disturbance d
due to scaled but uncompensated hysteresis and nonlinearities.

The transfer function matrix (25) gives a representation for the transducer system with weighting filters
included. In order to formulate the control laws for computing the gains K, H2 and H∞ norms of the closed
loop system representation T are minimized. These are

‖T‖2
2 =

1
2π

∫ ∞

−∞
trace [T ∗(jω)T (jω)] dω , ‖T‖∞ = sup

ω∈lR
σ̄ [T (jω)] (26)

where σ[T (jω)] represent the maximal singular values of the closed loop map T . Details regarding this robust
control formulation can be found in [7, 17].

7. Numerical Examples

We consider the two possibilities for the disturbance depicted in Figure 9. The first, which is due to scaled
but uncompensated hysteresis, yields the tracking results and errors shown in Figure 10. In the second case, the
disturbance is due to errors existing in the inverse compensation procedure used to approximately linearize the
transducer response. The tracking capabilities and errors for this case are shown in Figure 11.

A comparison between Figures 10 and 11 illustrates that highly accurate tracking is obtained in both cases,
with errors less than 2 µm maintained after the commencement of the periodic cycle. The equivalence in accuracy
for the uncompensated and compensated designs is attributed to the low level of hysteresis present in this low
frequency 0.25 Hz drive regime as demonstrated by the data in Figure 2. The present investigation focuses on
the extension of these control designs to higher frequencies where increasing hysteresis levels necessitate inverse
compensation as demonstrated for analogous magnetic model based controllers in [7].

Very similar results are obtained using the H∞ design, indicating that for this application, the construction
of models and control filters may play a more important role than the choice of robust control laws for high
accuracy tracking.

v+dv
P

v v+d
P

(a) (b)

Figure 9: (a) Disturbance d due to scaled but unmodeled hysteresis and constitutive nonlinearities. (b) Distur-
bance d due to inverse filtering errors.
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Figure 10: H2 design with sensor noise s and the disturbance d due to inversion error. (a) Reference and
simulated trajectory, and (b) tracking error.
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Figure 11: H2 design with sensor noise s and the disturbance d due to uncompensated hysteresis and constitutive
nonlinearities. (a) Reference and simulated trajectory, and (b) tracking error.

8. Concluding Remarks

We have summarized here the construction of macroscopic constitutive relations and models to characterize
the hysteretic drive dynamics of a PZT-based AFM stage. These models extend previous formulations through
the use of general density representations which provide high accuracy while maintaining implementational
efficiency. The modeling framework also facilitates inversion for linear control design. The performance of initial
robust control designs for high accuracy AFM drive regimes is illustrated through numerical examples.
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